We provide effective and economically affordable training courses for R and Python, click here for more details and course registration !
Data frame is the most widely used data object in R programming, due to the fact that a data frame can store different type of data contents (numeric, character, etc) into a tabular form. Creating a data frame is more than just simple. You can concretely combine several vectors into a data frame, as shown in the following code example.
#to create four vectors
idx <- c(13, 14, 15, 16)
nbr <- c(25, 34, 20, 52)
Type <- c("Type5", "Type6", "Type5", "Type6")
Condition <- c("good", "normal", "bad", "good")
#to create a data frame by including vectors
hdata <- data.frame(idx, nbr, Type, Condition)
#to show first three observations of the data frame
head(hdata,3)
idx nbr Type Condition
1 13 25 Type5 good
2 14 34 Type6 normal
3 15 20 Type5 bad
After a data frame is created, its elements can be returned by indexing. Indexing of a data frame can be applied upon its row and column, its row only, its column only, and column by variable name. The following examples show each of these cases.
#return first and second variable of data frame
hdata[1:2]
idx nbr
1 13 25
2 14 34
3 15 20
4 16 52
#return column by indexing variable of data frame
hdata$nbr
[1] 25 34 20 52
#return two variables of data frame using c()
#the result is a data frame
hdata[c("Type", "Condition")]
Type Condition
1 Type5 good
2 Type6 normal
3 Type5 bad
4 Type6 good
#show information of data frame
str(hdata)
'data.frame': 4 obs. of 4 variables:
$ idx : num 13 14 15 16
$ nbr : num 25 34 20 52
$ Type : chr "Type5" "Type6" "Type5" "Type6"
$ Condition: chr "good" "normal" "bad" "good"
#select 2nd variable of all observations(rows)
hdata[,2]
[1] 25 34 20 52
#select all columns of first observation(row) of data frame
hdata[1,]
idx nbr Type Condition
1 13 25 Type5 good
#return first 3 rows and second column, the result is a vector
hdata[1:3,2]
[1] 25 34 20
Modify a data frame involves same indexing mechanism. Rows, columns and elements of data frame can be modified, removed, added. Following code examples show each of these cases.
#third row, column'nbr' assigned with new value
hdata[3,"nbr"] <- 99
#show first 3 observations of data frame
head(hdata, 3)
idx nbr Type Condition
1 13 25 Type5 good
2 14 34 Type6 normal
3 15 99 Type5 bad
#add a new column to the new data frame
#using cbind()
ndata<-cbind(hdata,age=c(32,8,99,NA))
#the new data frame
ndata
idx nbr Type Condition age
1 13 25 Type5 good 32
2 14 34 Type6 normal 8
3 15 99 Type5 bad 99
4 16 52 Type6 good NA
#add a new row to data frame by rbind()
ndata_2<-rbind(ndata, c(15,26, "Type5","bad",19))
#new data frame
ndata_2
idx nbr Type Condition age
1 13 25 Type5 good 32
2 14 34 Type6 normal 8
3 15 99 Type5 bad 99
4 16 52 Type6 good <NA>
5 15 26 Type5 bad 19
#remove first row of data frame using -1
ndata_2 <- ndata_2[-1,]
#show new data frame
ndata_2
idx nbr Type Condition age
2 14 34 Type6 normal 8
3 15 99 Type5 bad 99
4 16 52 Type6 good <NA>
5 15 26 Type5 bad 19
#remove a column using NULL
ndata_2$Type <- NULL
#new data frame
ndata_2
idx nbr Condition age
2 14 34 normal 8
3 15 99 bad 99
4 16 52 good <NA>
5 15 26 bad 19
Click here to download Python Course Source Files !
For online Python training registration, click here ! Pandas provides flexible ways of generating data…
For online Python training registration, click here ! Data frame is the tabular data object…
Click her for course registration ! When a data frame in Python is created via…
We provide affordable online training course(via ZOOM meeting) for Python and R programming at fundamental…