We provide effective and economically affordable training courses for R and Python, click here for more details and course registration !
In this post, we will introduce and provide several useful and important functions in R. Most of them are fairly basic, and frequently used in data analysis with R programming.
length() – get the length of an object
#to show first three observations of a data frame 'grade'
head(grade,3)
StudentID Fullname Race Gender Country Age Math Physics
1 1 James Zhang A Male US 23 73 70
2 2 Wilson Li E Female UK 26 95 76
3 3 Richard Nuan Ye A Male UK 35 77 83
Chemistry Date
1 87 10/31/2008
2 83 3/16/2008
3 92 5/22/2008
#length of data frame 'grade'
length(grade)
[1] 10
#to create a vector
test<-grade$Age
#length of a vector
length(test)
[1] 20
dim() – to show the dimension of an object
#dimension of a data frame
dim(grade)
[1] 20 10
str() – to show structure of a data frame
str(grade)
'data.frame': 20 obs. of 10 variables:
$ StudentID: chr "1" "2" "3" "4" ...
$ Fullname : chr "James Zhang" "Wilson Li" "Richard Nuan Ye" "Mary Deng" ...
$ Race : chr "A" "E" "A" "E" ...
$ Gender : chr "Male" "Female" "Male" "Female" ...
$ Country : chr "US" "UK" "UK" "US" ...
$ Age : num 23 26 35 21 19 43 37 28 19 25 ...
$ Math : num 73 95 77 60 77 79 87 95 73 66 ...
$ Physics : num 70 76 83 99 89 64 99 87 92 93 ...
$ Chemistry: num 87 83 92 84 93 83 67 93 84 65 ...
$ Date : chr "10/31/2008" "3/16/2008" "5/22/2008" "1/24/2009" ...
class() – to show class type of an object
#class of a data frame
class(grade)
[1] "data.frame"
#class of an vector
class(test)
[1] "numeric"
mode() – to show the mode(data storage type) of an object
#mode of a data frame
mode(grade)
[1] "list"
#mode of a vector
mode(test)
[1] "numeric"
names() – to show the names of an object
#names of columns of a data frame
names(grade)
[1] "StudentID" "Fullname" "Race" "Gender" "Country"
[6] "Age" "Math" "Physics" "Chemistry" "Date"
c() – Combine extra elements to a vector
test2<-c(test, 20, 20)
test2
[1] 23 26 35 21 19 43 37 28 19 25 42 32 27 35 21 29 36 39 24 25 20
[22] 20
cbind() – Combines data frames across columns
#to create a data frame of 3 columns
gradepart<-grade[,c(7:9)]
names(gradepart)<-c("v1","v2","v3")
#combine two data frames
test3<-cbind(grade,gradepart )
#show first 3 observations of the combined data frame
head(test3,3)
StudentID Fullname Race Gender Country Age Math Physics
1 1 James Zhang A Male US 23 73 70
2 2 Wilson Li E Female UK 26 95 76
3 3 Richard Nuan Ye A Male UK 35 77 83
Chemistry Date v1 v2 v3
1 87 10/31/2008 73 70 87
2 83 3/16/2008 95 76 83
3 92 5/22/2008 77 83 92
>
rbind() – Combines data frames across rows
#to create a new data frame of 10 rows
test4<-grade[1:10,]
#combine two data frame along rows
test5<-rbind(grade, test4)
#show first 15 observations of the combined data frame
head(test5,15)
StudentID Fullname Race Gender Country Age Math Physics
1 1 James Zhang A Male US 23 73 70
2 2 Wilson Li E Female UK 26 95 76
3 3 Richard Nuan Ye A Male UK 35 77 83
4 4 Mary Deng E Female US 21 60 99
5 5 Jason Wilson A Male UK 19 77 89
6 6 Jennifer Hopkin A Female UK 43 79 64
7 7 Kari Gjendem E Female US 37 87 99
8 8 Wenche Dale E Female US 28 95 87
9 9 Jane Larsen A Female US 19 73 92
10 10 Steinar Hansen A Male US 25 66 93
11 11 Michael Chen A Male UK 42 83 90
12 12 Josef Curton E Male US 32 71 63
13 13 Jennifer Jones E Male US 27 79 76
14 14 Gary Grant E Female UK 35 90 78
15 15 Phil Yao A Male UK 21 69 69
Chemistry Date
1 87 10/31/2008
2 83 3/16/2008
3 92 5/22/2008
4 84 1/24/2009
5 93 7/30/2009
6 83 4/5/2009
7 67 11/24/2008
8 93 10/2/2008
9 84 6/5/2009
10 65 8/1/2008
11 77 10/24/2008
12 96 11/8/2009
13 82 10/29/2008
14 92 10/24/2008
15 83 10/15/2008
seq() – to create a sequence of numbers into a vector
#generate a vector from 1 to 10
seq(1,10)
[1] 1 2 3 4 5 6 7 8 9 10
#generate a vector of 5 numbers between 1 and 10, gap 2
seq(1,10,2)
[1] 1 3 5 7 9
rep() – generate a sequence of number with repetition
#generate a vector 1,1,1,1,1
rep(1,5)
[1] 1 1 1 1 1
#generate a vector 1,2,1,2,1,2,1,2,1,2
rep(c(1,2),5)
[1] 1 2 1 2 1 2 1 2 1 2
You can also watch R tutorial videos on our YouTube channel.
Click here to download Python Course Source Files !
For online Python training registration, click here ! Pandas provides flexible ways of generating data…
For online Python training registration, click here ! Data frame is the tabular data object…
Click her for course registration ! When a data frame in Python is created via…
We provide affordable online training course(via ZOOM meeting) for Python and R programming at fundamental…