Working with normal distributions in Python

Normal distribution is describing random variables with bell-shaped probability density functions. Normal distribution is widely used in data science because large sample random variates have a mean value which follows approximate normal distribution if variates are independently drawn from any distributions. The probability density function for normal distribution is determined by two parameters: mean(miu) and standard deviation(sigma).

Calculate point-biserial and biserial correlations using R

When a correlation, usually Person type correlation, is calculated, two variables have to be continuous. But this requirement does not excludes the situation when one of the two variables is a dichotomous (binary) distributed. Say if we want to measure the correlations between height and gender for a group of people, the variable gender has clear dichotomous values. This kind of Pearson correlation is called point-biserial correlation, because the value for gender variable is strictly 0 or 1.