Calculating Type I Error and Type II Error in Hypothesis Testing using Python
In hypothesis testing, the possibility of the other side than the conclusion usually exists, and the analysis commits so-called Type I and Type II errors, with respect to the truth and the decision made upon the random sample and hypotheses. In particular, a Type I error measures the probability that a true Null hypothesis (H0) is incorrectly rejected, and a Type II error says the probability that a false H0 not being rejected, respectively.