apply() function in R programming is used to perform a specified function, either a R base installation function or an user-written function, to the rows or columns of a matrix or data frame. The basic for of the function is :
apply(object, axis, fun)
Where object is a matrix or data frame, axis denotes application by rows(1) or columns(2) and fun is a function.
In the following example code, we first create a numerical matrix, then use apply() to calculate mean values for each row and each column of the matrix.
#create a matrix
test <- matrix(rnorm(20), nrow = 4)
test
#output
[,1] [,2] [,3] [,4] [,5]
[1,] 0.5313374 -0.06557855 0.1768340 -1.1796457 1.6648249
[2,] -1.3173030 0.90527153 0.2857861 1.2961520 -0.3639763
[3,] 1.8733338 -0.22366606 0.5579957 -0.1023676 -0.2577931
[4,] -0.2645615 -0.96548445 -0.3121663 0.8827860 0.7333012
#to calculate mean of each row, using index '1'
apply(test, 1, mean)
#result
[1] 0.2255544 0.1611860 0.3695006 0.0147750
#calculate mean of each column, using index '2' in apply() function
apply(test, 2, mean)
#result
[1] 0.20570166 -0.08736438 0.17711238 0.22423116 0.44408918
#calculate trimmed mean of each column, by excluding lower 20%
#and upper 20% of the observations.
apply(test, 2, mean, trim = 0.2)
#result
[1] 0.20570166 -0.08736438 0.17711238 0.22423116 0.44408918
Next example show how to calculate sum by rows and columns of a matrix using apply() function.
#create a sample matrix
sample_matrix <- matrix(C<-(1:10),nrow=3, ncol=10)
print( "sample matrix:")
sample_matrix
#output
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 1 4 7 10 3 6 9 2 5 8
[2,] 2 5 8 1 4 7 10 3 6 9
[3,] 3 6 9 2 5 8 1 4 7 10
# Use apply() function across rows of matrix to find sum
print("sum across rows:")
apply( sample_matrix, 1, sum)
#result
[1] 55 55 55
# use apply() function across columns of matrix to find mean
print("mean across columns:")
apply( sample_matrix, 2, sum)
#result
[1] 6 15 24 13 12 21 20 9 18 27
Click here to download Python Course Source Files !
For online Python training registration, click here ! Pandas provides flexible ways of generating data…
For online Python training registration, click here ! Data frame is the tabular data object…
Click her for course registration ! When a data frame in Python is created via…
We provide affordable online training course(via ZOOM meeting) for Python and R programming at fundamental…